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Abstract- When Genetic Algorithms are em-
ployed in multimodal function optimization,
identifying multiple peaks and maintaining sub-
populations of the search space are two central
themes. In this paper, we use an immune sys-
tem model to explore the role of crossover in
GAs with respect to these two issues. The ex-
perimental results reported here will shed more
light into how crossover affects the GA’s search
power in the context of multimodal function op-
timization. We will also show that an adaptive
crossover strategy successfully achieves the two
goals simultaneously. These results on the ef-
fects of crossover are a step toward a deeper
understanding of how GAs work, and thus how
to design more robust GAs for solving multi-
modal optimization problems.

1 Introduction

The process of information exchange among the pop-
ulation of individuals manipulated by Genetic Al-
gorithms (GAs) [7] involves two key components:
crossover and mate selection [9]. The investigation for
the role of these two factors in advancing GA’s search
for a single, best-so-far solution,1 has been conducted
in [15] and [9], respectively. In this paper we aim at
studying the role of crossover in GAs for multimodal
function optimization.2

In the setting of multimodal function optimization,
engineering and machine learning, there are two im-
portant issues when a GA is used: (1) how fast can
a GA discover one or several peaks? And (2) can a
GA maintain diverse subpopulations in different parts
of the search space?3

1This metric is defined as the fitness of the best individual
that has been seen thus far by generation n.

2See [10] for relevant research work conducted for the role
of mate selection in GAs in the context of multimodal function
optimization.

3The first issue was briefly discussed in [9]. For the second
issue, there are some practical problems where maintaining sub-
populations are critical. An example is the application of genetic

Although considerable research has been conducted
for the importance of crossover in terms of the GA’s
search for a single, better solution, the role of crossover
is still not clear when GAs are used in the context of
multimodal optimization.

In this paper we intend to employ an immune sys-
tem model proposed by Smith, Forrest and Perelson
[14], which was shown to be an effective algorithm for
multimodal optimization, in order to advance our un-
derstanding for the role of crossover, and further de-
sign more robust GAs for practical tasks. Before delv-
ing fully into this paper, we briefly review Smith et
al.’s immune system model and discuss how it facili-
tates formation of subpopulations over different areas
of the search space. Section 3 illustrates empirical re-
sults for providing some answers to the two issues dis-
cussed above. Then we will extend the framework for
studying the role of crossover to an adaptive crossover
strategy, and show how this approach could accomplish
the two goals simultaneously. Finally, this paper is con-
cluded with the insights obtained and future research
lines.

2 An Binary Immune System Model

Fitness sharing was an idea motivated by Holland’s dis-
cussion [7] in which the number of individuals occupy-
ing a niche is limited to that niche’s carrying capacity.
Goldberg and Richardson [4] then introduced a fitness
sharing mechanism that induces population diversity
by penalizing individuals for the presence of similar in-
dividuals in the population. The technique they pro-
posed was shown to be an effective method for main-
taining subpopulations over several high-fitness regions
of the search space. However, one of the serious lim-
itations of this approach is that setting σs (a critical
parameter in the fitness sharing scheme that represents
a cutoff distance, beyond which no sharing will occur)
requires knowledge about the number of peaks in the
search space. This limitation arises from the fact that

approach to decentralized PI controller tuning for multivariable
processes in [17].



fitness sharing is defined explicitly.
To avoid the difficulty of appropriately choosing σs

Smith, Forrest and Perelson [14] proposed an algorithm
that does not require explicit construction of the shar-
ing function. Their approach can implicitly achieve
fitness sharing that discovers for itself how many peaks
are in the search space, and allocate trials appropri-
ately. The idea is to use the metaphor of biologi-
cal immune systems that can maintain the diversity
needed for it to detect multiple antigens. Then the GA,
along with the immune system algorithm, effectively
distributes the population over several high-fitness ar-
eas of the search space.

The immune system model considered in this paper
is based on a model introduced by Farmer et al. [1],
where both antigens and antibodies are represented by
binary strings. It is a simplification from the real biol-
ogy in which genes are specified by a four-letter nucleic
acid alphabet and recognition between antibodies and
antigens is based on their three-dimensional shapes and
physical properties. However, this abstract model of
binary strings is rich enough for exploring how a rela-
tively small number of recognizers (the antibodies) can
evolve to recognize a much larger number of different
patterns (the antigens).

In this binary immune system model, recognition is
evaluated through a string matching procedure. The
antigens are considered fixed, and a population of N
antibodies is evolved to recognize the antigens using
a GA. For any set of antigens, the goal is to obtain
an antibody cover—a set of antibodies such that each
antigen is recognized by at least one antibody in the
population. Maintaining diverse antibodies is crucial
for obtaining a cover [14].

An antibody is said to match an antigen if their bit
strings are complementary (maximally different). Since
each antibody may have to match against several dif-
ferent antigens simultaneously, we do not require per-
fect bit-wise matching. Many possible match rules are
plausible physiologically (see [12] for examples). The
degree of match is quantified by a class of match score
functions M : Antigen×Antibody → <. For instance,
M can simply count the number of complementary bits
or M can identify contiguous regions of complementary
bitwise matches within the string.

Smith et al. [14] adopted a model in which a fixed
set of antigens is given, and the antibodies are initial-
ized either to be completely random (to see if the GA
can learn the correct antibodies) or initially given the
answer by setting the population to include the correct
antibodies (to test the stability of the answer). Their
mechanism for fitness scoring is as follows:

1. A single antigen is randomly selected from the
antigen population.

2. From the population of N antibodies a randomly
selected sample of size σ is taken without replace-
ment.

3. For each antibody in the sample, match it against
the selected antigen, determine the number of
bits that match, and assign it a match score.

4. The antibody in the sample population with the
highest match score is determined. Ties are bro-
ken at random.

5. The match score of the winning antibody is added
to its fitness. The fitness of all other antibodies
remains unchanged.

6. This process is repeated for C cycles (typically
one to three times the number of antibodies).

In this scoring scheme, since an antibody’s fitness is
increased only if it is the best matching antibody in the
sample, the fitness values of antibodies are interdepen-
dent. In [14] Smith et al. showed analytically how this
procedure implicitly embodies fitness sharing. Further-
more, Forrest et al. [2] reported that this scheme can
maintain subpopulations of antibodies that cover a set
of antigens.

Table 1: Illustration of the immune-based GAs.

1. Randomly generate an initial population of n antibodies.

2. Evaluate the fitnesses of antibodies by the six steps of
Smith et al.’s algorithm.

3. Repeat until n offspring have been created.

a. Select a pair of parents for mating.
b. Apply crossover operator.
c. Apply mutation operator.

4. Reset all the new individuals’ fitnesses to zero and
replace the current population with the new population.

5. Go to Step 2 until terminating condition.

The illustration of the GA system using Smith et
al.’s algorithm is displayed in Table 1.4

4Since in Smith et al.’s algorithm the match scores of winning



Table 2: Building blocks of antigens

s1 = 11111***************; c1 =10
s2 = *****11111**********; c2 =10
s3 = **********11111*****; c3 =10
s4 = ***************11111; c4 =10
s5 = 00000***************; c5 =10
s6 = *****00000**********; c6 =10
s7 = **********00000*****; c7 =10
s8 = ***************00000; c8 =10

3 Experimental Results

To illustrate effects of crossover on Smith et al.’s im-
mune algorithm (we call it the multimodal algorithm
from here on), we use a simple example in which anti-
gen populations cannot be matched by a single anti-
body type. Consider an antigen population that is
composed of 50% 000 . . . 0 (all 0’s) and 50% 111 . . . 1
(all 1’s). In order for an antibody population to recog-
nize these antigens, there would need to be some anti-
bodies that are all 1’s and others that are all 0’s. Thus,
a solution to this problem requires the GA to maintain
two different solutions simultaneously. This is an ex-
ample of a “multiple peaks” problem because there are
two incompatible solutions that are maximally differ-
ent. Typically, on multiple-peaks problems it is difficult
for simple GAs to distribute the population over several
peaks of a fitness landscape (two different subpopula-
tions of antibodies that match two types of antigens,
in this case). This is because the selection pressure
in a simple standard GA usually entails strong conver-
gence tendency to only one peak. Even without selec-
tion pressure, genetic drift due to sampling error can
still lead the GA to converge on one of the peaks [5].

In light of pattern-recognition, Forrest et al. [2]
pointed out that the immune system needs to recog-
nize bacteria partially on the basis of the existence
of certain unusual molecules that are inherently dif-
ferent from human cells, since many bacteria have cell
walls made from polymers that do not occur in humans.
With this as motivation, we study the GA’s ability to
detect common patterns (building blocks) in the anti-
gen population and adopt the building-block idea in [7]
to calculate fitnesses of antibodies.

Table 2 illustrates the building blocks of antigens
111 . . . 1 and 000 . . . 0 (string length is of 20 bits5). In

antibodies are continuously accumulated, after each generation
their fitness values can be large. Thus at step 4 of Table 1 we
reset the fitnesses of the new population individuals to zero after
each generation to prevent fitnesses from unlimited increase.

5The small string length here serves well for illustrating the

this paper, an antibody is said to match an antigen if
its bit string is complementary to the antigen at cer-
tain building blocks. Therefore, the match score func-
tion Mb is to identify the building blocks for which an
antibody matches an antigen, and then assign corre-
sponding scores to that antibody.

Specifically, the building-block-based function in-
volves a set of schemata S = {s1, . . . , s8} and the fitness
(match score) of a bit string x (antibody) is defined as

Mb(x) =
∑

si∈S

ciδsi
(x),

where each ci is a value assigned to the schema si as
defined in the table; δsi

(x) is defined as 1 if x is an
instance of the complement of si and 0 otherwise. For
example, given an antigen 111 . . . 1, an antibody with
the first five and the last five bits being all 0’s will
receive score c1 + c4 = 20, since these ten bits are com-
plementary to those of the antigen.

Smith et al. [14] considered two cases for the score
calculation of antibodies—perfect match and partial
match. In case of perfect match, an antibody receives a
non-zero score only if it perfectly matches the antigen.
In case of partial match, an antibody receives a non-
zero score if it partially matches the antigen. Therefore,
the degree by which an antibody matches an antigen is
indicated by the number of their complementary bits,
and this determines the specificity of an antibody. Note
that the consequence of a partial matching rule is that
there is a trade-off between the number of antibodies
used and their specificity—as the specificity of antibod-
ies increases, so does the number of antibodies required
to achieve a certain level of detection [6].

For the scoring rule discussed in this building-block-
based recognition problem, we can also expand its def-
inition by allowing partial match. That is, a prefect
building-block match indicates that an antibody scores
if all of its bits at a building block are complementary
to those of an antigen. On the other hand, an example
for partial match can allow an antibody to score with,
say 80% bits (i.e., 4 bits in the case of the building
blocks shown in Table 2) of a building block at which
it matches an antigen. The result of this flexible scor-
ing is a smaller population size required to achieve a
certain level of recognition performance.6 In this pa-
per, we report the results obtained for the cases of the
80% building-block match.

effects of crossover. We currently have some results for larger
string length that are consistent with the results obtained here.

6In the case of 100% building-block match, several experi-
ments show similar qualitative results as the 80% building-block
match case. But it requires much larger population size (i.e.,
higher computation cost) to achieve similar performance level.



Table 3: The mean function evaluations for discovering
antibodies 111 . . . 1 and 000 . . . 0

Antibody 111 . . . 1 000 . . . 0
Crossover rate 0 4420 (777) 6940 (1299)

Crossover rate 0.3 2460 (286) 3420 (550)
Crossover rate 0.5 2500 (276) 2680 (330)
Crossover rate 0.7 2340 (369) 2300 (207)
Crossover rate 1 2180 (255) 1860 (212)

3.1 Effects on Discovery of Peaks

To address the question mentioned in the beginning of
this paper we conduct a series of GA experiments us-
ing the multimodal algorithm. Our first objective is to
investigate effects of one-point crossover on the peak-
discovery capability of the immunity-based GA system,
if any. Unless stated otherwise, these experiments use
an antibody population size of 100, a binary tourna-
ment selection scheme [3],7 one-point crossover with
various rates, mutation rate of 0.005, and ran for 150
generations. The antigen population is 50% 000 . . . 0
and 50% 111 . . . 1, and both antigens and antibodies are
binary strings of length 20. The number of samples, σ,
is 10, which is 10% of the population size. We choose
this value because Smith et al.’s analysis suggests that
too small or too large a sample size cannot show fit-
ness sharing’s effect. In addition, as mentioned in [14],
since the number of cycles (C) does not have a bearing
on the antibodies’ expected fitnesses, we use 100 cy-
cles (i.e., population size) for each generation and this
turns out to serve well for our investigation. Thus the
number of the total function evaluations for each GA
run are generations×cycles×sample size, which equals
150,000.

Table 3 displays the averaged mean function evalu-
ations (over 50 runs) required for discovering 111 . . . 1
and 000 . . . 0 by the GA with crossover rate of 0, 0.3,
0.5, 0.7 and 1, respectively. (The numbers in paren-
theses are the corresponding standard errors.) These
results show that as crossover rate increases, the GA
tends to discover peaks with less time. This indicates
that crossover can indeed enhance the GA’s search
power while locating multiple peaks, which is an ex-
tension of the study concerning the role of crossover in
GA’s search for a single, best-so-far solution.

7Tournament selection is employed here for low computa-
tional cost.
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Figure 1: The number of antibodies that correctly rec-
ognize antigens

3.2 Effects on Maintaining Subpopulations

Once the desired antibodies are discovered, the next
theme is to investigate the role of crossover in GAs
with respect to maintaining these antibody subpop-
ulations. Figure 1 displays the experimental results
(averaged over 50 runs) for the number of antibodies
that correctly recognize antigens.8 One can see that
the proportion of the correct antibodies maintained by
the GAs using higher crossover rates tends to signifi-
cantly drop. The reason is in the following: as crossover
rate is increased, matings between the GA’s population
individuals would naturally increase the probability of
producing useless hybrids (individuals that fall into the
valley between the two peaks). E.g., given antibodies
111 . . . 1 and 000 . . . 0, higher crossover rate tends to
increase the probability of the crossing-over between
the two strings, which is then more likely to generate
offspring that are away from the two peaks.

3.3 Adaptive Crossover Rates

The results illustrated thus far indicate that one would
need to run the GAs with various crossover rates, de-
pending on whether the goal is to identify multiple
peaks, or to maintain multiple subpopulations. Then
what if the two goals need to be fulfilled simultane-
ously?

To answer this question, we propose an adaptive
crossover strategy—at the first generation, crossover
rate is set at 1, and gradually declined by a certain

8The vertical bars overlapping the curves for the number of
the desired antibodies are 95% confidence intervals calculated
from Student’s t-statistic [11].
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Figure 2: The number of antibodies that correctly rec-
ognize antigens based on the adaptive crossover strat-
egy

amount at each consecutive generation until it reaches
0. Then the crossover rate is kept at 0 for all the re-
maining generations. In this paper we allow crossover
rate to decline by 0.1 at every generation until it
reaches 0. Thus the crossover rate is 1 at the first
generation, and is 0.9 at generation 2, and so on. Then
the GA will use crossover rate of 0 for generations after
10.

The empirical results for the GAs using the adap-
tive crossover scheme show that the averaged function
evaluations (over 50 runs) for discovering 111 . . . 1 and
000 . . . 0 is 3000 and 3080, respectively (the standard
error is 317 and 848, respectively). In comparison
with the results obtained for crossover rate 0 in Ta-
ble 3, one can see that adapting crossover rates can re-
duce the time required for discovering multiple peaks.
On the other hand, compared to the results obtained
for crossover rate 1 in Figure 1, Figure 2 shows that
the number of desired antibodies has significantly in-
creased, as well. Although this framework of the adap-
tive crossover strategy is rather simple, it indeed sheds
some light into how the two goals can be achieved si-
multaneously.

3.4 Effects of Population Size

In Table 3, one may notice that the GA using crossover
rate of 1 can discover the peaks in only about two gen-
erations; and in case of crossover rate of 0, the GA
requires only about four to seven generations to do so.
This is because the multimodal testbed considered here
is rather simple, and a population of 100 antibodies
seems adequate for the discover of the peaks. In practi-

Table 4: The number of runs (out of 50) in which an-
tibodies 111 . . . 1 and 000 . . . 0 are discovered

Antibody 111 . . . 1 000 . . . 0
Crossover rate 0 48 50

Crossover rate 0.3 49 49
Crossover rate 0.5 48 46
Crossover rate 0.7 47 49
Crossover rate 1 49 50

cal situations where the size of the GA population may
not be sufficient for searching a given problem space,
one may wonder how crossover would affect the GA’s
power in discovering numerous peaks and maintaining
subpopulations.

In this subsection, we present empirical results for
studying the effects of population size in the immune
GA model. Table 4 illustrates the results for the num-
ber of runs (out of 50) in which antibodies 111 . . . 1 and
000 . . . 0 are discovered, respectively, based on popula-
tion size 50 and sample size 5 (other parameter val-
ues remain unchanged). One can see that in almost
each case there is one or few runs where the antibodies
are not discovered. A closer inspection indicates that
the founder effect has seriously constrained the GA’s
search for these peaks. In GA research, the founder
effect has been identified as an important factor that
hampers the GA’s search process [8]—in presence of
incompatible schemata, the first discovered of the in-
compatible schemata comes to occupy a large portion
of the population, and constrains future evolutionary
progress. Consequently, the founder schema effectively
precludes the testing of the other incompatible schema.
Further improvements stem from the founder, making
it progressively less likely that the other schema will
influence the search process.

We can observe the founder effect directly by plot-
ting the densities (percentage of the population that
are instances) of the relevant schemata over time for
the GAs. Figure 3 displays the schema density dy-
namics for a typical run where antibody 111 . . . 1 is
not discovered over the whole search course. Although
each of s1 and s2 has instances at the first few genera-
tions, the instances of s2 quickly found their dynasties
and take over the whole population. As a consequence,
future improvements are constrained by s2 such that
s1 is prohibited from being further tested. (Due to
sampling errors, either of each pair of the incompatible
schemata is likely to dominate the population. There-
fore, for other runs different schemata may take over
the whole population.)

Table 5 displays the mean function evaluations for
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Figure 3: Schema dynamics for observing the founder
effect

Table 5: The mean function evaluations for discovering
antibodies 111 . . . 1 and 000 . . . 0

Antibody 111 . . . 1 000 . . . 0
Crossover rate 0 5208 (1002) 5770 (1053)

Crossover rate 0.3 1316 (244) 2071 (368)
Crossover rate 0.5 1089 (183) 1239 (181)
Crossover rate 0.7 814 (94) 1107 (172)
Crossover rate 1 960 (114) 948 (106)

discovering 111 . . . 1 and 000 . . . 0, averaged over the
number of the runs in which they are located. Com-
pared to the results shown in Table 3, one can see
that as population size decreases, higher crossover rates
tend to provide more advantage in discovering multiple
peaks.

Figure 4 illustrates the corresponding results for the
number of antibodies that correctly recognize antigens.
In comparison with the results shown in Figure 1, one
can see that the performance discrepancy between var-
ious crossover rates in maintaining subpopulations has
become more indistinguishable.

Figure 5 reveals a typical run for the number of de-
sired antibodies conducted on crossover rate of 1. This
figure shows that 111 . . . 1 is drown out by 000 . . . 0 be-
fore generation 20, although both of them do show up
in earlier generations. Further inspection shows that
there are 24 (out of 50) runs in which most of the in-
dividuals converge to all 1’s, and in 14 (out of 50) runs
most of the individuals converge to all 0’s, and there
are 12 runs in which the two peaks are lost. Due to
the insufficient population size, this kind of strong con-

vergence occurs to all the cases tested here, which in
turn generates the larger error bars displayed in Figure
4. Furthermore, as the population converges on one
peak, the crossing-over between them will not generate
many distinct hybrids that fall into the valley between
the two peaks. One can thus see that higher crossover
rates would not reduce the proportion of the correct an-
tibodies maintained by the GAs. In other words, when
the population size is not large enough, lower crossover
rates will not facilitate maintaining subpopulations.
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Figure 4: The number of antibodies that correctly rec-
ognize antigens
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4 Conclusion and Future Work

In this paper, we have described Smith et al.’s im-
mune system model in which subpopulations can be
maintained through specific interactions among anti-
bodies and antigens. We have investigated the role
of crossover in the immunity-based GA systems with
respect to discovering multiple peaks and maintaining
subpopulations. Both of these issues are important in
the setting of multimodal function optimization.

In studying the peak-identifying problem, we
showed that higher crossover rate facilitates discov-
ering multiple peaks of the fitness landscape. This
is a crucial extension for the research work that in-
dicates crossover can advance the GA’s search for a
single, best-so-far solution. However, in studying the
subpopulation-maintaining problem, the results show
that higher crossover rate is harmful because the pro-
portion of the antibodies that correctly recognize anti-
gens is decreased. To resolve the conflict, we then pro-
pose an adaptive crossover strategy and show that it
could fulfill the two goals simultaneously.

We have also studied the effects of population size
on the immune GA system. As population size is not
adequate for searching a problem space, the immune
system model’s performance in discovering peaks and
maintaining subpopulations is degraded. The results
reveal that, due to the founder effect, the GAs cannot
always locate the peaks of the fitness landscape, even
with high crossover rates. However, in the cases where
peaks can be identified, higher crossover rates can still
improve the GA’s search speed for the peaks.

Since the pattern-recognition strategy in our ap-
proach was based on schema detection, it is worth fur-
ther exploration because in real problems when there
are many more antigens than antibodies, antibodies
need to detect common regions. Our future work will
extend the results for schema detection, identification
of multiple peaks, and maintenance of subpopulations
to more realistic scale of antigens and antibodies. On
the other hand, since the results obtained for adaptive
crossover strategies are encouraging, another research
line is to investigate other plausible adaptive crossover
schemes, such as the adaptive crossover distribution
mechanism in [13], in order to develop more robust
GAs for multimodal optimization tasks.

We have been concentrating on the study of the role
of one-point crossover, our future work will extend to
the study for two-point crossover and uniform crossover
[16]. Finally, we would like to develop an analytical tool
to enhance the understanding for the role of crossover
in GAs when used in multimodal function optimization.
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